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Many natural and engineering processes occur under conditions of convection~ The struc- 
ture of the convective motion that arises depends on the past history of the process and on 
how the convection is induced. We study the convective motion of a gas in a two-dimensional 
square cross-section of space when a temperature jump (thermal wave) propagates along the 
lower boundary. It is shown that beyond the stability threshold of the system to symmetric 
and asymmetric perturbations, depending on the wave propagation velocity, two stationary 
solutions are possible which correspond to single-vortex and two-vortex convection structures. 
Using the physics of the problem, we obtain an approximate expression for the boundary separ- 
ating the domains of the two stationary solutions. In order to specify the conditions under 
which the different convective motions are formed, we carry out a numerical simulation of the 
development of convection using the nonstationary two-dimensional Navier--Stokes equations 
for a compressible gas. The time and energy characteristics of both types of convective 
motion are established. We consider an example of our model in which a temperature jump 
moving with a constant velocity can be considered as propagating along the surface of a 
catalyst or as a fuel wave in an exothermal reaction in order to describe the gasdynamics 
in combustion in a closed volume. 

i. Consider a gas at rest confined to a square 0~X, Y~L, where X and Y are Cartesian 
coordinates. Let the gas be in equilibrium in an external force field (gravity) at tempera- 
ture To. The external force is directed along the negative Y direction. On the horizontal 
boundaries of the region the temperature is constant and equal to To, and the lateral (verti- 
cal) boundaries are thermally insulated. 

At t =0 a temperature jump begins to propagate with constant velocity w along the lower 
boundary from the left vertical wall toward the right. After the jump has passed a certain 
point, the temperature is raised to the value T =Ts. The wave propagation is described by 
the nonstationary boundary condition 

Y = O, T / T  o = t -i-- (Os - -  l ) O ( w t  - -  X ) ,  ( 1 . 1 )  

where is the Neaviside function and 0 s =Ts/To >i. In the time interval 0 <t <t B =L/w the 
boundary condition (i.i) leads to an asymmetric perturbation in the initially at rest gas. 
Behind the temperature jump, heat waves propagate in the fluid layers adjacent to the lower 
boundary. After the temperature jump reaches the right boundary (t~tB) the boundary condi- 
tion (i.i) specifies a constant temperature on the entire lower boundary and now acts symmet- 
rically on the system. The effect of symmetric or asymmetric perturbations in the develop- 
ment of convection will depend on the transit time of the wave t B. For small tB symmetric 
perturbations are, most significant: for large tB asymmetric perturbations are most signifi- 
cant. 

These perturbations lead the system away from the equilibrium state and they can induce 
various types of convective motion. It was shown in [i] that in a plane square region a 
symmetric perturbation (a suddenly applied external force acting along the Y axisl heating 
and cooling of the lower ~Tall) induces stationary two-vortex convective motion. An asymmet- 
ric perturbation (rotation of the external force vector) produces single-vortex motion. 
Thus when tB is small (the thermal wave velocity w is large) one expects the formation oftwo 
vortices symmetric about the axis X =0.5L and for large t B (small velocity) a single vortex 
with a rising flow of gas near the left boundary. 

We discuss the conditions under which the two convective structures are realized. It 
was sho~m in [2, 3] that convection develops after a characteristic time, called the 

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp~ 44-50, 
July-August, 1983. Original article submitted June 28, 1982. 

0021-8944/83/2404-0485507.50 �9 1984 Plenum Publishing Corporation 485 



convection induction period. During the induction period there is a heating of the gas near 
the heated wall by conduction and under the action of gravity an upward convective flow is 
formed. The realization of a certain type of convective motion under the heating condition 
(l.l) depends on the relation between the propagation time of the wave t B and the convection 
induction period. If tB is larger than the induction time for single vortex convective 
motion tt, then until the wave reaches the right boundary, single-vortex convection will 
arise near the left boundary. If on the other hand tB <t~, then convection only begins to 
develop after the temperature T s is established on the entire lower boundary and therefore 
under the action of a symmetric perturbation. Hence after the induction time t2 there will 
be two symmetric vortices. 

We estimate the critical velocity of the thermal wave which gives the boundary between 
the two branches of the solution. Let t, be the smallest wave transit time for which single- 
vortex motion can occur. After this time, near the left boundary of the region where single- 
vortex convection has developed, a heated layer of thickness I ~2/~t, will be formed where 
x is the thermal conductivity. The velocity of a buoyant mass of gas heated to temperature 

2 
T s of characteristic linear dimension I is of order V c ~ig(0 s ~ l)/0s [4] where g is the 
acceleration of gravity. The characteristic time for the development of convection during 
which the heated gas acquires velocity V c can be estimated as 

z (1.2) 
t l ~  = g ( 0 , - - ~ ]  " 

~ m  c o n d i t i o n  t l z t .  d e f i n e s  t h e  b o u n d a r y  b e t w e e n  t h e  d o m a i n s  o f  t h e  s y m m e t r i c  a n d  a s y m -  
m e t r i c  b r a n c h e s  o f  t h e  s o l u t i o n ;  f r o m  (1o2)  we h a v e  

2x ~2/3 L ~ 1 
t~ = t ,  = g(oT--_  ~) ] = 

:~ k (aa Pr) 2/a ( 1 . 3 )  
(Ra = Lag (0, - -  l ) /v•  P r  = v/x) 

or 

u ==- u .  = k (Ra Pr)  1/~ (u  = wO~/31(Lg (0s - -  i))l/~), ( 1 . 4 )  

w h e r e  u i s  t h e  wave  v e l o c i t y  i n  u n i t s  o f  t h e  c h a r a c t e r i s t i c  c o n v e c t i v e  v e l o c i t y ,  Ra i s  t h e  
R a y l e i g h  n u m b e r ,  P r  i s  t h e  P r a n d t l  n u m b e r ,  k i s  a c o n s t a n t  o f  p r o p o r t i o n a l i t y  e q u a l  t o  0 . 6 3  
a c c o r d i n g  t o  t h e  a b o v e  e s t i m a t e .  

I f  u < u . ( t B  > t . ) ,  s t a t i o n a r y  s i n g l e - v o r t e x  m o t i o n  i s  r e a l i z e d .  The minimum l i n e a r  d i m e n -  
s i o n  o f  t h e  h e a t e d  l a y e r  n e a r  t h e  l e f t  w a l l  f o r  t h i s  m o t i o n  t o  o c c u r  i s  7.~, = 4xtn = 4 L 2 / k  
( R a P r )  2 / 3 .  F o r  a g i v e n  wave  t r a n s i t  t i m e  tB t h e  i n d u c t i o n  p e r i o d  f o r  s i n g l e - v o r t e x  c o n v e c -  
t i v e  m o t i o n  i s  b e t w e e n  t .  a n d  tB ( i . e . ,  t .  < t l  < t B ) .  I f  u > u . ( t B  < t . ) ,  t h e n  t h e  t i m e - d e p e n -  
d e n t  b o u n d a r y  c o n d i t i o n  ( 1 . 1 )  d o e s  n o t  a f f e c t  t h e  d e v e l o p m e n t  o f  c o n v e c t i o n  and  t w o - v o r t e x  
m o t i o n  i s  f o r m e d .  

The a b o v e  d i s c u s s i o n  m a k e s  s e n s e  o n l y  f o r  R a y l e i g h  n u m b e r s  e x c e e d i n g  a c r i t i c a l  v a l u e  
Ra2 which corresponds to the loss of stability with respect to symmetric perturbations [I, 
5]. For Ra <Ra2 only single-vortex motion can occur and for Ra >Ra2 both types of stationary 
motion are possible depending on whether the wave velocity is larger or smaller than the crit- 
ical value u=u,(Ra, Pr). 

2. In order to make the estimates (1.3) and (1.4) quantitative, and to establish the 
stationary characteristics of convection, we study numerically the development of convection 
in a gas confined to a plane square region with the propagation of a temperature jump along 
the lower boundary. The problem is formulated in dimensionless form: 

o--~ + (UV)  U - -  V p  + j + AU ~'PM ~ + - f  grad div U , 

+ d i v p U = O ,  ~ + U V O - -  A O - - ( ?  t) O d i v U ,  a't p Re Pr 
p = p0(x = t (g/L) ~/2, x =  X / L ,  g----- Y / L ,  A = O"/Ox ~  OVOg ~ 
| = (0, - - t ) ,  M 2 = Lg(~RTo)  -~, Re = LZ/2g~/~po/q, Pr  = ~,/Cp~l); 

T = 0 .  U = 0, 0 = 1, p = exp (--~M~g); ( 2 . 3 )  

u Ir = O, 0.~ (x  = O; l )  = O, 0 (v  = i )  = i ;  ( 2 . 3 )  
O(y -- O) = I + (0~ - -  t)O(W'T - -  x) (w' = w/(Lg)tm'). ( 2 . 4 )  
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Here we choose the following scales of measurement: length L, time (L/g) ~/=, velocity 
(Lg) x/2, initial density Po at y =0, temperature To, pressure poRTo (R is the gas constant), 
U is the velocity of the gas, p, p, and e are the density, pressure, and temperature, y =Cp/ 
c v is the adiabatic index, M, Re, Pr are the Mach, Reynolds, and Prandtl numbers, and F is 
the boundary. The coefficients of thermal conductivity % and dynamical compressibility 
are taken to be constant, and viscous dissipation in the heat equation is neglected. 

The system of equations (2.1) with the initial and boundary conditions (2.2) and (2.3), 
�9 (2.4) is numerically integrated [6, 7] with the use of a rectangular 21 • grid compressed 
near the boundary. In particular, near the boundary the grid points have twice the density 
as in the center of the region. The time step is chosen from the condition AT =l~, where 
the number K ranges from 2 to 8, and h is the minimum grid step. Control calculations were 
performed on a 41 x41 grid with a different distribution of grid points. The mass and energy 
balances were satisfied to within 1% and 2% respectively. Five minutes of computer time was 
required to calculate i00 time steps. 

Ale following values of the parameters were used in the calculations: M 2 =0.05. pr =i, 
Y =1.4, w' =1-5, Re =130-800, es =1.5-4. The Rayleigh number was varied in the range Ra = 
9-i03-5.10 s. It should be pointed out that for the above values of es one must take into 
account the compressibility of the medium in (2.1). 

Ale results of the calculations support the existence of symmetric and asymmetric con- 
vective structures (Fig. i, Re =200, 8s =1.5, U =0.6). For large wave velocities stationary 
motion is established with two vortices having upward motion in the center and downward 
motion at the periphery (Fig. la with u =3.6 >u, shows the velocity field at times t =8.3, 
16.7, 83.5). For small wave velocities, single-vortex stationary motion is formed with an 
upward motion of gas near the left boundary and do~mward motion along the right boundary 
(Fig. ib, with u =3.15 <u,, t =5.6, 11.2, 56.0). 

Ale results of the calculations were used to construct the domains for the two station- 
ary solutions on the (u, ig Ra) plane. In Fig. 2 the points labeled i correspond to steady- 
state single-vortex motion, and the points 2 to two-vortex motion. Only those points close 
to the boundary dividing the convective regimes are shown. The quantitative equation for 
the boundary curve for Ra >31,500 has the form (1.3), (1.4), as before, but now k =0.68 (this 
is sho~m by the solid straight line in Fig. 2). 

Ale dependence u, ~Ra ~/6 is violated for small Rayleigh numbers because of the approach 
to the critical value Ra2 corresponding to loss of stability with respect to symmetric pertur- 
bations. It was shown by calculation that Ra2 =8600 • This agrees with the numerical 
result 8500 • done in [8] and the result from small perturbation stability analysis (8495) 
carried out in [5]. 
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Calculations for Ra <Ra2 show that only single-vortex motion occurs in this range inde- 
pendent of the wave velocity. In the range Ra >Ra2 near the branching boundary of the solu- 
tions (1.3), (1.4) from the direction of velocities u <u,, an interaction of perturbations 
of different symmetry in the nonstationary part of the process is observed. Initially two 
vortices are formed which then deteriorate into a single vortex with positive rotation. 

~le induction time for two-vortex convection is 

q = ~ + t .  (&<t,), 
where t~ is the induction period for t B § and is determined by the numerical solution of 
(2.1) to (2.3) with the condition 8(y =0) =8 s on the lower boundary of the region for the 
time corresponding to the maximum in the total kinetic energy. From analysis of the calcu- 
lated data we obtain the formula 

~2 
t ~  = ~ 38.22 

• (!~;~ _.Sf]Oi~>o.~ssi'rl/6" 

~le induction period for two-vortex convection for finite wave velocity satisfies the 
o o inequality t2~t2~t2 +tB (tB <t,) and can be larger or smaller than the induction period 

for single-vortex convection t, <t~ <tB (t B >t,). 

Starting from Ra~8.5-10 4 symmetric two-vortex motion is metastable for u >u,. After 
the establishment of two-vortex motion where vibrations are damped out, vibration of all 
quantities begins again and the system transforms into the single-vortex state. The meta- 
stable state exists over a long time interval which exceeds the propagation time of the ther- 
mal wave along the lower boundary by at least an order of magnitude; therefore one can speak 
of a quasistationary state for Ra >8.5-10 4 , The existence of similar metastable states in 
an incompressible fluid was pointed out in [8], where detailed numerical studies were done 
on their origin and decay with the help of finite-difference methods. 

3. The numerical solution of (2.1) to (2.4) up to the onset of convection gives the 
stationary characteristics of the convection such as the mean heat fluxes at the lower and 

upper boundaries: 

1 I 

Nu,  = (- q (x, o) dx, NUo = J' q (x, 1) (q = - -  
0 0 

and the kinetic and thermal (internal) energies of the entire mass of gas in the region: 

1 1  1 1  

E = - ~ O ,  v = , ~  
O 0  O 0  

Here the heat fluxes are normalized by their stationary values in the absence of convection 
and the energies are normalized by 0o~ 2. In the stationary regime Nu s =Nuo. 

The results of the calculations can be summarized as follows (Pr =I). For single-vortex 

motion 

N u  1 = t . 7 9 r ~  -- 5 . i 6 ( R a > 7 4 0 0 ,  r I = lg  R a ) ;  (3.1) 

l g  E1 = t . 2 9 r l  - -  3 . 3 1 ,  lg  H1 = r l  ~ t . 2 4  ( 3 . 9 3 < Q < 5 . 4 ) ;  ( 3 . 2 )  
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and for two-vortex motion 

Nu~ = I ,-q- 0 . 0 i ( R a  - -  8600)~ < 4 .9 .  i0~), Nu2 = 3 (Ha > 5.  ~04); 

lg  Ez ---- 1 .05r  2 - -  2.33, lg  H2 = 3.5 -i- 0 .5r2(3.4i  < r., := lg (Ra - -  8600) < 5.38). 

(3.3) 

(3.4) 

Formulas (3.1) and (3.3) approximate the numerical results within 5% and in the indicat- 
ed ranges of Rayleigh numbers agree with numerical simulations of convection obtained ear- 
lier for an incompressible liquid [5, 8, 9] (in these papers it was assumed that a linear 
temperature dependence obtained on the vertical walls, unlike the present paper) and in gases 
[i]. In particular, near the stability threshold the following relation is satisfied very 
accurately (Nu= -- 1) 2 ~ (Ra -- Ra2). 

Equations (3.2) and (3.4) determine E and H to 20% accuracy. For Rayleigh numbers which 
only slightly exceed the critical values Ra2, the kinetic energy of a gas is much larger for 
single-vortex convection than for two-vortex motion. As Ra increases, i.e., as we go away 
from the stability boundary for symmetric perturbations, the vortex energy increases and the 
difference between E~ and E2 rapidly decreases. In both convective regimes the kinetic 
energy of a gas is much less (by about a factor of l0 s to 104 ) than the thermal energy. 

4. Problems where convection is induced by a moving heat source are of interest in 
diverse applications. For example, such a mechanism has been used to explain the circulation 
in the atmosphere of Venus [i0, ii]. We consider here two examples which illustrate the 
model and numerical results, as applied to motion arising from an exothermal chemical reac- 
tion in a closed vessel. 

Many exothermal chemical reactions proceed on catalytic surfaces which form the boun- 
daries of the reactor. If the stationary state is not unique for such a heterogeneous cata- 
lytic system, local perturbations on the catalyst surface can lead under certain conditions 
to the propagation of a traveling wave of the other stationary state along the surface [12, 
13]. For example in the oxidation of sulfur-dioxide on a platinum catalyst, the combustion 
causes a transition from the low-temperature kinetic regime of the reaction to the diffusive 
regime. Numerical calculations and experiment [13] both show that a combustion wave propa- 
gates from the local combustion center with an approximately constant velocity behind the 
front ~ich establishes the high temperature. The wave, which can be modeled as a moving 
temperature jump, has a velocity which depends on the reaction kinetics, the state of the 
catalyst, the thermal and diffusive regimes of the catalytic surface and other factors, and 
can vary widely. The solution obtained above can be used to establish the nature of the 
motion of the reacting mixture resulting from the firing of the catalyst. In a closed reac- 
tor sy~,,etric and asymmetric vortex motions will arise, and these lead to different distri- 
butions of temperature and concentrations of the reacting materials over the volume of the 
reactor. The realization of either state depends on the wave velocity (or the transit time 
of the wave) and is given by (1.3), (1.4). 

The other example involves the propagation of a combustion wave along a planar surface 
of a combustible material. If the chemical transformation region above the surface of the 
combustible material is much smaller than the spatial scale of the resulting gasdynamic 
structures, then the reaction can be considered as taking place on the surface itself, and 
the propagation of the combustion wave will approximately be described by (i.I). Then if the 
closed region is large enough, the solution of (2.1) to (2.4) will describe the gasdynamics 
from the propagation of the combustion wave along the lower boundary of the enclosure whose 
length is assumed to be much less than that of the other horizontal dimension of the enclo- 
sure (the corridor fire model). Depending on the fire propagation velocity, the gas under- 
goes symmetric or asymmetric convective motion and consequently different thermal loads will 
be realized on the walls of the enclosure. The magnitudes of these loads are basic for 
determining the fire safety of the enclosure. We illustrate the situation in Fig. 3 where 
for Ra=2.104 is shown the mean Nu (straight lines) and local q(x, i) (dashed curves) steady- 
state heat fluxes on the upper boundary of the region for single-vortex (curves i) and two- 
vortex (curves 2) motion. The mean heat flux for single-vortex convection is about 1.2 times 
larger than for symmetric motion. The maximum heat flux in the first case is shifted toward 
the left wall (x~0.38); naturally for symmetric motion the maximum lies on the symmetry 
axis. The maximum heat fluxes are about equal for both cases and significantly exceed their 
average values. Therefore in estimating the heat-stability it is important to use the maxi- 
mum value of the local heat flux and also its location. 
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Finally when the planar region is not a square [14, 15], (1.4) gives the wave velocity 
dividing the symmetric and asymmetric cases; in this case for L one takes thelength of the 
boundary along which the thermal wave propagates. 
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